DOI: 10.14218/ERHM.2025.00039

Short Communication

Reporting Quality of Trend Analyses Published in Leading Medicine and Oncology Journals during 2008-2018

Xiaoling Yuan¹, Fei Deng², Yating Wang^{3#} and Lanjing Zhang^{2,4,5#*}

¹Department of Infectious Disease, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ²Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; ³Department of Oncology, Ascension All Saint Cancer Center, Racine, WI, USA; ⁴Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA; ⁵Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

Received: July 26, 2025 | Revised: September 04, 2025 | Accepted: September 15, 2025 | Published online: October 21, 2025

Abstract

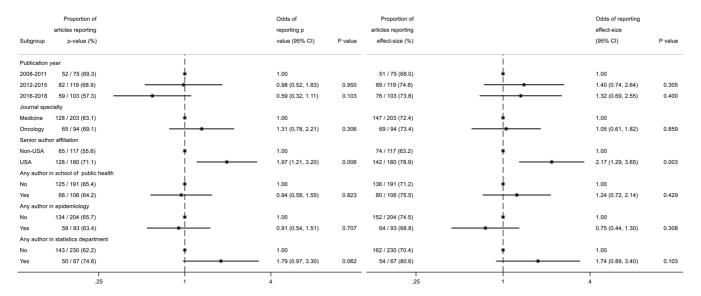
Reporting quality in clinical research is critical for evidence-based medicine and reproducibility of clinical studies. Previous work has mostly focused on the reporting quality of clinical trials and observational longitudinal studies. However, few studies have examined the reporting quality of trend analyses. Moreover, the reporting of recommended statistical metrics in trend analyses remains largely unclear. Therefore, we assessed the reporting quality of trend analyses based on reporting of recommended statistical metrics. We systematically searched the PubMed for the trend-analysis articles published in 10 leading medicine and oncology journals over an 11-year period (2008-2018). Studies published after 2019 were excluded due to a sudden, significant increase in publication numbers during and immediately after the COVID-19 pandemic. Only original articles, research letters, and meta-analyses/systematic reviews were included. We scored the reporting quality of these articles based on whether they reported p-values, effect sizes, beta/coefficient/slope/annual-percentage-change (APC). 297 articles met the inclusion criteria. Among these, 193 (66.0%) reported p-values and 216 (72.7%) reported effect sizes. Only 13 (5.8%) analyses reported neither p-values/effect sizes nor beta/coefficient/slope/APC. In multivariable regression models, authors affiliated with epidemiology departments were less likely to report effect sizes, whereas those from statistics departments were more likely to do so. Interestingly, U.S.-based senior authors (versus non-U.S.) more likely reported p-values. No factors were independently associated with reporting APC. Overall, the reporting quality of trend analyses in leading medicine and oncology journals appears moderate and warrants improvement. We thus call for increased awareness and further research on reporting quality in trend analyses in oncology research and beyond.

Introduction

Reporting quality in clinical research is critical for evidence-based medicine and the reproducibility of studies. Previous work has mostly focused on the reporting quality of clinical trials, including those in neuro-oncology, urology, cardiology, nephrology, pharmaceutics, and infectious diseases.¹⁻⁷ Although the quality of clinical trials has been improving,^{8,9} that of observational longitudinal

Keywords: Trend analysis; Reporting quality; Statistical analysis; Clinical research. *Correspondence to: Lanjing Zhang, Department of Pathology, Princeton Medical Center, 1 Plainsboro Rd., Plainsboro, NJ 08563, USA. ORCID: https://orcid.org/0000-0001-5436-887X. Tel: +1-609-853-6833, Fax: +1-609-853-6841, E-mail: lanjing.zhang@rutgers.edu

*These authors contributed equally to this article.


How to cite this article: Yuan X, Deng F, Wang Y, Zhang L. Reporting Quality of Trend Analyses Published in Leading Medicine and Oncology Journals during 2008-2018. *Explor Res Hypothesis Med* 2025;10(4):e00039. doi: 10.14218/ERHM. 2025.00039.

studies remains low. ^{10–12} However, few studies have addressed the reporting quality of trend analyses.

Trend analyses are critical for assessing changes in, and predicting the future of, epidemiological parameters. 13,14 Recent trendanalysis guidelines recommend reporting slopes or beta/coefficients whenever possible. 15 Additionally, the American Statistical Association and others recommend reporting effect sizes. 16,17 Nevertheless, the reporting of these recommended statistical metrics in trend analyses remains largely unclear. Therefore, we examined the reporting quality of trend analyses in leading medicine and oncology journals, using the reporting of p-values, effect sizes, or beta/coefficients/annual percent change (APC) as the quality metrics. We also identified factors associated with reporting quality in these trend analyses.

Materials and methods

We systematically searched PubMed for the articles published over

Fig. 1. Proportions of trend analyses published during 2008–2018 reporting *p***-values and effect sizes, and their associated factors.** Only the senior author's affiliation (U.S. vs. non-U.S.) was linked to reporting either *p*-values (Left) or effect sizes (Right) among the 397 trend analyses published in leading medicine and oncology journals during 2008–2018. CI, confidence intervals.

an 11-year period, from January 1, 2008, to December 31, 2018, whose titles included "trend" or "trends" in the following medicine and oncology journals: *Ann Intern Med, Ann Oncol, BMJ, J Clin Oncol, J Natl Cancer Inst, JAMA Oncol, JAMA, Lancet, Lancet Oncol*, and *N Engl J Med*. We considered including articles published after 2019; however, surges in publication numbers during and immediately after the COVID-19 pandemic (also known as SARS-CoV-2) could have influenced reporting quality. ^{18,19} Therefore, we focused on the 11-year period from 2008 to 2018.

We included only original articles, research letters, and metaanalyses/systematic reviews that performed trend analyses. To ensure that articles focused primarily on trend analysis, we limited our search to title words, acknowledging that this approach might miss some relevant studies—a limitation we discuss. Three authors independently reviewed the full texts using a standardized data extraction form, recording publication year, journal specialty (medicine/oncology), model type, reporting of *p*-values, effect sizes (defined as quartiles/confidence/credible/uncertainty intervals), beta/coefficient/slope/APC, senior author location, and the presence of any authors affiliated with the School of Public Health, statistics department, or epidemiology department. Discrepancies were resolved through discussion, and in rare cases where consensus could not be reached, Dr. Zhang made the final decision.

According to guidelines, ¹⁵ beta, coefficients, slopes, or APC should be reported in (piecewise) linear models. We assessed whether these metrics were reported in articles using linear models. Reporting quality was scored by assigning 1 point for reporting a *p*-value or effect size and another point for reporting a beta, coefficient, slope, or APC. For articles reporting the same analysis, each article was assessed independently. The sum of an article's points represented its reporting-quality score, with a maximum of 2 points. Points were unweighted because the metrics cover different statistical aspects. To our knowledge, clinical significance among the various metrics has not been differentiated or compared in existing recommendations, ^{15–17} although all metrics are clinically important and useful.

We used Chi-square tests, Fisher's exact tests, and (ordinal) lo-

gistic regression to examine potential associations (Stata, version 15). Only factors with p < 0.10 in univariate analyses were included in multivariable logistic regression models. Two-sided p-values were reported, and statistical significance was defined as p < 0.05.

Results and discussion

Among the 398 identified reports of trend analyses published between 2008 and 2018, 297 met our inclusion criteria (Fig. S1). These included 38 (12.8%) analyses using non-parametric models, 226 (76.1%) using (piecewise) linear models, 32 (10.8%) using non-linear parametric models, and one (0.3%) using a semi-parametric model (Cox regression). Among these analyses, 193 (66.0%) and 216 (72.7%) reported p-values and effect sizes, respectively. Subgroup analyses showed that U.S.-based senior authors were more likely to report p-values or effect sizes than non-U.S. senior authors (Fig. 1), while reporting of these parameters was not associated with any other factors.

Among the 226 trend analyses using (piecewise) linear models (Table 1), 169 (74.8%) reported *p*-values, 183 (81.0%) reported effect sizes, 94 (41.6%) reported APC, and 34 (15.0%) reported beta coefficients/slopes. No multiple articles reported the same or similar analysis. Only 13 (5.8%) analyses reported neither *p*-values/effect sizes nor beta coefficients/slopes/APC. Ordinal logistic regression showed that author affiliation with the School of Public Health was associated with higher reporting-quality scores (odds ratio = 7.44, 95% confidence interval: 3.22–31.17). In multivariable regression models (Table 2), author affiliation with an epidemiology or statistics department was associated with reporting effect sizes, and U.S.-based senior authors (versus non-U.S.) were more likely to report *p*-values. No factors were independently associated with reporting APC (Table 2).

Overall, the reporting quality of the included trend analyses was moderate to good, consistent with the reported increasing quality in clinical trials. However, several reporting-quality issues remain concerning. Reporting of *p*-values or effect sizes did not change over the publication years, despite recommendations advocating

Table 1. Reporting quality of trend analyses with linear models published in leading medicine and oncology journals, 2008–2018

		.										
	Report-	Proport	Proportion of reporting quality metrics, n/total by strata (%)	ting quali	ity metrics,	, n/total k	by strata (%)					
Subgroup	ing <i>p-</i> value	<i>p</i> - value	Reporting effect size	<i>p</i> - value	Report- ing APC	<i>p</i> - value	Reporting Beta/ coefficient	p- value	Score 0	Score 1	Score 2	<i>p</i> -value*
Overall	169/226 (74.8)		183/226 (81.0)		94/226 (41.6)		34/226 (15.0)		13/226 (5.8)	119/226 (52.7)	94/226 (41.6)	
Publication year		0.352		0.203		0.082		0.823				0.801
2008–2011	41/56 (73.2)		41/56 (73.2)		30/56 (53.6)		8/56 (14.3)		2/56 (3.6)	28/56 (50.0)	26/56 (46.4)	
2012–2015	71/89 (79.8)		73/89 (82.0)		31/89 (34.8)		15/89 (16.9)		5/89 (5.6)	50/89 (56.2)	34/89 (38.2)	
2016–2018	57/81 (70.4)		69/81 (85.2)		33/81 (40.7)		11/81 (13.6)		6/81 (7.4)	41/81 (50.6)	34/81 (42.0)	
Journal specialty		0.724		0.326		0.025		0.911				0.108
Medicine	114/151 (75.5)		125/151 (82.8)		55/151 (36.4)		23/151 (15.2)		12/151 (7.9)	80/151 (53.0)	59/151 (39.1)	
Oncology	55/75 (73.3)		58/75 (77.3)		39/75 (52.0)		11/75 (14.7)		1/75 (1.3)	39/75 (52.0)	35/75 (46.7)	
Senior-author location		0.012		0.016		0.058		0.428				0.827
Non-U.S.	52/80 (65.0)		58/80 (72.5)		40/80 (50.0)		10/80 (12.5)		5/80 (6.3)	40/80 (50.0)	35/80 (43.8)	
U.S.	117/146 (80.1)		125/146 (85.6)		54/146 (37.0)		24/146 (16.4)		8/146 (5.5)	79/146 (54.1)	59/146 (40.4)	10.4)
Any author in School of Public Health		0.89		0.682		0.064		0.217				0.004
No	105/141 (74.5)		113/141 (80.1)		52/141 (36.9)		18/141 (12.8)		7/141 (5.0)	86/141 (61.0)	48/141 (34.0)	34.0)
Yes	64/85 (75.3)		70/85 (82.4)		42/85 (49.4)		16/85 (18.8)		6/85 (7.1)	33/85 (38.8)	46/85 (54.1)	
Any author in epidemiology department		0.163		0.028		0.015		0.497				0.684
No	115/148 (77.7)		126/148 (85.1)		53/148 (35.8)		24/148 (16.2)		8/148 (5.4)	81/148 (54.7)	59/148 (39.9)	(6:68
Yes	54/78 (69.2)		57/78 (73.1)		41/78 (52.6)		10/78 (12.8)		5/78 (6.4)	38/78 (48.7)	35/78 (44.9)	
Any author in statistics department		0.044		0.089		0.151		0.413				0.226
No	123/172 (71.5)		135/172 (78.5)		67/172 (39.0)		24/172 (14.0)		11/172 (6.4)	95/172 (55.2)	66/172 (38.4)	
Yes	46/54 (85.2)		48/54 (88.9)		27/54 (50.0)		10/54 (18.5)		2/54 (3.7)	24/54 (44.4)	28/54 (51.9)	

Table 2. Multivariable models showing factors associated with reporting quality metrics of trend analyses with linear models published in leading medicine and oncology journals, 2008–2018

Subgroup	Reporting <i>p</i> -value		Reporting et	ffect size	Reporting APC	n value
	OR (95% CI)	<i>p</i> -value	OR (95% CI)	<i>p</i> -value	OR (95% CI)	— <i>p</i> -value
Publication year						
2008–2011					reference	
2012–2015					0.51 (0.25 - 1.05)	0.066
2016–2018					0.72 (0.35 - 1.51)	0.390
Journal specialty						
Medicine					reference	
Oncology					1.77 (0.97 - 3.22)	0.063
Senior author affilia	tion					
Non-U.S.	reference		reference		reference	
U.S.	2.17 (1.17 - 4.03)	0.014	1.93 (0.96 - 3.88)	0.065	0.80 (0.44 - 1.47)	0.475
Any author in School	ol of Public Health					
No					reference	
Yes					1.67 (0.92 - 3.02)	0.090
Any author in epide	miology department					
No			reference		reference	
Yes			0.38 (0.18 - 0.80)	0.011	1.62 (0.90 - 2.91)	0.108
Any author in statist	tics department					
No	reference		reference			
Yes	2.29 (1.00 - 5.24)	0.051	3.28 (1.21 - 8.90)	0.020		

APC, annual percent change; CI, confidence intervals; OR, odds ratio.

the use of effect sizes. ^{16,17} The reasons underlying this are worth further investigation.

Non-U.S. senior authors reported *p*-values and effect sizes less frequently than their U.S. counterparts, highlighting a need for additional research and training. Furthermore, more than half of the trend analyses using linear models did not report *p*-values/effect sizes, slopes/beta/APC, or either, which is inconsistent with existing recommendations. ¹⁵ Without these metrics, quantification and comparison of linear models are difficult or impossible, reducing the scientific rigor of these studies.

We also found that involvement of a statistics department was associated with more frequent reporting of effect sizes in oncological trend analyses, whereas involvement of an epidemiology department was associated with less frequent reporting. This may reflect the rigorous statistical training provided in statistics departments. Indeed, the participation of biostatisticians or epidemiologists has been associated with higher methodological quality, higher acceptance rates, and shorter times to publication. Accordingly, it has been recommended to include statisticians in more clinical research and trials. 10,21,22

The paradoxical finding that involvement of an epidemiology department was associated with less effect-size reporting (odds ratio = 0.38, 95% confidence interval: 0.18–0.80, p = 0.011) warrants careful interpretation. One possible explanation is that the emphasis on effect-size reporting is relatively recent (2016–2019), 16,17 whereas epidemiologists may historically have preferred other metrics. Given our focus solely on trend analyses, this finding may

not generalize to other types of epidemiological or clinical studies, although it should be examined in future work. Notably, few studies on reporting quality of clinical trials or longitudinal studies have distinguished between biostatisticians and epidemiologists.^{7,20} Future research is warranted to fill this knowledge gap.

Few studies focus on the reporting quality of trend analyses, whereas many studies have examined that of clinical trials or epidemiological studies.^{7,9,11,12,23} Some experiences and data from clinical trials and trend analyses may be mutually informative. First, the development and implementation of reporting guidelines appear to improve the reporting quality of randomized clinical trials.²³ However, no official reporting guidelines exist for trend analyses, which may be needed. We therefore recommend developing and implementing formal reporting guidelines for trend analyses, beyond current recommendations. 15 Second, while librarians and information specialists did not significantly impact the reporting quality of systematic reviews, they have contributed to the journal review process.²⁴ It would be interesting to explore whether their involvement could similarly improve reporting quality in trend analyses. Third, our findings highlight the need for journal editors and peer reviewers to more rigorously enforce reporting standards and improve reporting quality. Indeed, one recommendation has already been published by a leading medical journal.¹⁷ Publishers and professional societies could also play a more active role in enforcing reporting standards for trend analyses. Finally, our data suggest that increased involvement of statisticians in trend analyses, particularly in oncology research, may be beneficial and could

extend to medical research more broadly. It is concerning that the involvement of epidemiology departments was associated with less frequent reporting of effect sizes. Further research is needed to confirm our findings and to understand the underlying reasons. Notably, involvement of either department was not associated with higher overall reporting-quality scores.

This study has several limitations. First, our search strategy, which relied on the presence of 'trend/trends' in titles, may have missed relevant analyses using alternative terminology (e.g., 'temporal changes,' 'secular patterns'). Second, we focused on high-impact journals, limiting the generalizability of our findings to the broader literature. Journals of intermediate or low impact may publish trend analyses of lower quality than high-impact journals, and future research is warranted to test this hypothesis. Third, we did not include trend analyses published after 2018. These recent works are particularly interesting given the surges in publication numbers during and after the COVID-19 pandemic, 18,19 but a longer timeframe and more data are likely needed to reliably examine biases and impacts associated with the pandemic; otherwise, conclusions may be inaccurate or misleading. Fourth, our title-based search may have missed articles that mention trend analyses only in the abstract or main text. Although such omissions likely represent a small proportion of relevant studies, this limitation may affect the generalizability of our findings. Finally, the reporting-quality metrics we used may not be applicable to all reports. Some trends are difficult to accurately model with a single algorithm and therefore may not report all recommended metrics.

Conclusions

The reporting quality of trend analyses in leading medicine and oncology journals appears moderate and should be further improved. We call for increased research and awareness regarding reporting quality in trend analyses in oncology research and beyond. The author's affiliation with an epidemiology department was associated with less frequent reporting of effect sizes, whereas affiliation with a statistics department was associated with more frequent reporting. Interestingly, U.S.-based senior authors (versus non-U.S.) were more likely to report *p*-values. Additional studies are needed to validate our findings across other types of journals and future publications.

Acknowledgments

None.

Funding

This work was supported by the National Cancer Institute, National Institutes of Health (grant number R37CA277812 to LZ). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Conflict of interest

Dr. Lanjing Zhang is a co-editor-in-chief of *Exploratory Research* and *Hypothesis in Medicine*. The authors declare no other conflicts of interest.

Author contributions

Concept and design (XY, YW, LZ), acquisition, analysis, and interpretation of data (XY, FD, YW, LZ), drafting of the manuscript (XY), critical revision of the manuscript for important intellectual content (XY, FD, YW, LZ), statistical analysis (XY, FD, LZ), and supervision (LZ, YW). Dr. Lanjing Zhang and Dr. Yating Wang have full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. There was no personal assistance or providers of special reagents from sources that do not fulfill the requirements of authorship.

References

- [1] Yang Z, He H, Wang R, Liu D, Li G, Sun F. Application and Quality of Model-Based Meta-Analysis in Pharmaceutical Research: A Systematic Cross-Sectional Analysis and Practical Considerations. Clin Pharmacol Ther 2024;116(2):397–407. doi:10.1002/cpt.3290, PMID:38724461.
- [2] Suppree JS, Hart S, Keshwara SM, Trichinopoly Krishna S, Gillespie CS, Richardson GE, et al. Assessing the reporting quality of pediatric neuro-oncology protocols, abstracts, and trials: Adherence to the SPIRIT and CONSORT statements. Neurooncol Pract 2024;11(5):617–632. doi:10.1093/nop/npae042, PMID:39279769.
- [3] Norling B, Edgerton Z, Bakker C, Dahm P. The Quality of Literature Search Reporting in Systematic Reviews Published in the Urological Literature (1998-2021). J Urol 2023;209(5):837–843. doi:10.1097/ JU.000000000003190, PMID:36661375.
- [4] Deng J, He J, Wang J, Cheng CW, Jiao Y, Wang N, et al. Reporting quality of randomized controlled trials of angina pectoris with integrated traditional Chinese and western medicine interventions: a cross-sectional study. BMC Med Res Methodol 2023;23(1):124. doi:10.1186/s12874-023-01953-1. PMID:37221472.
- [5] Chatzimanouil MKT, Wilkens L, Anders HJ. Quantity and Reporting Quality of Kidney Research. J Am Soc Nephrol 2019;30(1):13–22. doi:10.1681/ASN.2018050515, PMID:30545982.
- [6] Nagai K, Saito AM, Saito TI, Kaneko N. Reporting quality of randomized controlled trials in patients with HIV on antiretroviral therapy: a systematic review. Trials 2017;18(1):625. doi:10.1186/s13063-017-2360-2, PMID:29282092.
- [7] Delgado-Rodriguez M, Ruiz-Canela M, De Irala-Estevez J, Llorca J, Martinez-Gonzalez A. Participation of epidemiologists and/or biostatisticians and methodological quality of published controlled clinical trials. J Epidemiol Community Health 2001;55(8):569–572. doi:10.1136/jech.55.8.569, PMID:11449014.
- [8] Dechartres A, Charles P, Hopewell S, Ravaud P, Altman DG. Reviews assessing the quality or the reporting of randomized controlled trials are increasing over time but raised questions about how quality is assessed. J Clin Epidemiol 2011;64(2):136–144. doi:10.1016/j. jclinepi.2010.04.015, PMID:20705426.
- [9] Dechartres A, Trinquart L, Atal I, Moher D, Dickersin K, Boutron I, et al. Evolution of poor reporting and inadequate methods over time in 20 920 randomised controlled trials included in Cochrane reviews: research on research study. BMJ 2017;357:j2490. doi:10.1136/bmj. j2490, PMID:28596181.
- [10] Van Calster B, Wynants L, Riley RD, van Smeden M, Collins GS. Methodology over metrics: current scientific standards are a disservice to patients and society. J Clin Epidemiol 2021;138:219–226. doi:10.1016/j.jclinepi.2021.05.018, PMID:34077797.
- [11] Trentini B, Steindel M, Marlow MA. Low quality evidence of epidemiological observational studies on leishmaniasis in Brazil. PLoS One 2014;9(9):e106635. doi:10.1371/journal.pone.0106635, PMID:251 97965.
- [12] Tooth L, Ware R, Bain C, Purdie DM, Dobson A. Quality of reporting of observational longitudinal research. Am J Epidemiol 2005;161(3):280–288. doi:10.1093/aje/kwi042, PMID:15671260.
- [13] Zhang J, Lin Y, Zhang L. Trends in Alcoholic Fatty Liver Disease. JAMA 2019;322(10):979–980. doi:10.1001/jama.2019.10347, PMID:31503 202

- [14] Wong T, Dang K, Ladhani S, Singal AK, Wong RJ. Prevalence of Alcoholic Fatty Liver Disease Among Adults in the United States, 2001-2016. JAMA 2019;321(17):1723–1725. doi:10.1001/jama.2019.2276, PMID:31063562
- [15] Ingram DD, Malec DJ, Makuc DM, Kruszon-Moran D, Gindi RM, Albert M, et al. National Center for Health Statistics Guidelines for Analysis of Trends. Vital Health Stat 2 2018;1–71. PMID:29775435.
- [16] Wasserstein RL, Lazar NA. The ASA statement on p-values: context, process, and purpose. Am Stat 2016;70(2):129–133. doi:10.1080/00 031305.2016.1154108.
- [17] Harrington D, D'Agostino RB Sr, Gatsonis C, Hogan JW, Hunter DJ, Normand ST, et al. New Guidelines for Statistical Reporting in the Journal. N Engl J Med 2019;381(3):285–286. doi:10.1056/NEJMe1906559, PMID:31314974.
- [18] Aviv-Reuven S, Rosenfeld A. Publication patterns' changes due to the COVID-19 pandemic: a longitudinal and short-term scientometric analysis. Scientometrics 2021;126(8):6761–6784. doi:10.1007/ s11192-021-04059-x, PMID:34188333.
- [19] Rousseau R, Garcia-Zorita C, Sanz-Casado E. Publications during COVID-19 times: An unexpected overall increase. J Informetr 2023;17(4):101461. doi:10.1016/j.joi.2023.101461.

- [20] Altman DG, Goodman SN, Schroter S. How statistical expertise is used in medical research. JAMA 2002;287(21):2817–2820. doi:10.1001/ jama.287.21.2817, PMID:12038922.
- [21] Stocken DD, Mossop H, Armstrong E, Lewis S, Dutton SJ, Peckitt C, et al. Good Statistical Practice-development of tailored Good Clinical Practice training for statisticians. Trials 2024;25(1):113. doi:10.1186/ s13063-024-07940-1, PMID:38336761.
- [22] Li Z, Wang X, Barnhart HX, Wang Y. Working With Statisticians in Clinical Research. Stroke 2018;49(11):e311–e313. doi:10.1161/STROKEA-HA.118.022266, PMID:30355217.
- [23] Tan ZW, Tan AC, Li T, Harris I, Naylor JM, Siebelt M, et al. Has the reporting quality of published randomised controlled trial protocols improved since the SPIRIT statement? A methodological study. BMJ Open 2020;10(8):e038283. doi:10.1136/bmjopen-2020-038283, PMID:32847919.
- [24] Rethlefsen ML, Schroter S, Bouter LM, Kirkham JJ, Moher D, Ayala AP, et al. Improving peer review of systematic reviews and related review types by involving librarians and information specialists as methodological peer reviewers: a randomised controlled trial. BMJ Evid Based Med 2025;30(4):241–249. doi:10.1136/bmjebm-2024-11 3527, PMID:40074237.